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Abstract

The solution of the governing steady transport equations for momentum, heat
and mass transfer in fluids undergoing non-equilibrium chemical reactions can be
extremely challenging. The difficulties arise from both the the complexity of the
nonlinear solution behavior as well as the nonlinear, coupled, non-symmetric na-
ture of the system of algebraic equations that results from spatial discretization
of the PDEs. In this paper, we briefly review progress on developing a stabilized
finite element (FE) capability for numerical solution of these challenging problems.
The discussion considers the stabilized FE formulation for the low Mach number
Navier-Stokes equations with heat and mass transport with non-equilibrium chemi-
cal reactions, and the solution methods necessary for detailed analysis of these com-
plex systems. The solution algorithms include robust nonlinear and linear solution
schemes, parameter continuation methods, and linear stability analysis techniques.
Our discussion considers computational efficiency, scalability, and some implementa-
tion issues of the solution methods. Computational results are presented for a CFD
benchmark problem as well as for a number of large-scale, 2D and 3D, engineering
transport/reaction applications.
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1 Introduction

Physical problems in a number of scientific and engineering fields can be de-
scribed by a system of coupled nonlinear PDEs. One of the main interests
in these fields is the problem of determining steady and/or time dependent
states evolving with changes of characteristic parameters. These parameters
arise in various ways. The parameters can be coefficients of the PDEs, charac-
teristic values from the boundary conditions, or characteristic dimensions from
the domain of the solution. Our discussion focuses on applications involving
steady state solution of transport/reaction systems. However, the methods,
algorithms, and parallel implementations presented have broad applicability
to many scientific fields.

The numerical challenge for transport/reaction system simulation is the so-
lution of the partial differential equations (PDEs) describing momentum, heat,
and multi-component mass transfer with chemical reaction source terms. These
governing PDEs are outlined in residual form in Table 1, and are valid for low
Mach number flows operating at a thermodynamic system pressure of P. In
these equations the transport properties are the mixture density, p, mixture
viscosity, p, mixture specific heat, C'p, the mixture thermal conductivity, A,
the k' species mass diffusivity, Dy, and thermal diffusivity, DI. The source
terms are defined by the molecular weight, Wj, the specific enthalpy, iAzk, and
the molar production per unit volume, wy, for the k** species. This system of
PDE:s is non-self adjoint, strongly coupled, highly nonlinear, and characterized
by physical phenomena that span a large range of length and time scales. The
high degree of coupling and nonlinearity in this system is generated from the
convection terms, the chemical reaction source terms, and the strong depen-
dence of the transport properties and chemical kinetics on the thermodynamic
state, (T, P, Yy).

Our discretization of the governing transport/reaction equations employs sta-
bilized finite element (FE) methods. This formulation is based on the develop-
ments of Hughes et. al.(see e.g. [35,5,34,32,39,31,37,36,67]) in a seminal set of
papers that developed this very successful and powerful discretization method-
ology. The stabilized formulation circumvents the Ladyzhenskaya-Babuska-
Brezzi condition (see e.g. [4,25]) for compatible discretization for mixed finite
element formulations of the saddle point problem arising from discretization
of the incompressible Navier-Stokes equations. The stabilized FE formulation
allows for equal order interpolation of the incompressible Navier-Stokes equa-
tions and eliminates spurious pressure modes. Our formulation implements
a simplified form of a consistently stabilized FE method [1]. In the current
context of transport/reaction systems, the use of equal order interpolation
simplifies the data structures of a parallel unstructured FE code and the lin-
ear algebra interface for iterative solution methods.
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Table 1

Residual form of governing transport/reaction PDEs and simplified constitutive
equations. The primitive variables are the velocity vector u, the temperature T,
the hydrodynamic pressure P, and the N, species mass fractions Y;. The physical
and transport properties are a function of the local T" and Y}, and a global system
pressure P.

Additionally, a stabilized FE strategy is also used to control instability in
the Galerkin FE formulation for highly convected flows. The methodology
that we employ is based on a variation of the stabilized FE formulations
of Hughes et. al. [34,39] , Shakib [65,66], and Tezduyar [70]. The stabilized
FE method allows solution of systems where the cell Reynolds number, Re,,
and thermal energy and mass transport Peclet numbers, Pe,., are larger than
one by decreasing numerical oscillations due to convection. In addition, this
stabilization improves the conditioning of, and therefore the iterative solution
of, the Jacobian matrices in the linear subproblems generated by Newton’s
method.

In general, solutions of the transport/reaction PDEs described in Table 1
can produce complex nonlinear solution behavior. Through the variation of
one or more parameters, new multiple steady states, time periodic, quasi-



periodic, or chaotic (aperiodic) solutions appear (or bifurcate) at critical values
of the parameters [45,24,12]. Depending on the path followed through the
parameter space, these multiple solutions can appear, become more complex
and disappear with the change of the parameters. Not only is the number
and location of these solutions in the parameter space of interest, but also the
stability or long time evolution of such systems. The existence of an instability
(growth of disturbances) in a physical or engineered system is of great concern,
because it often results in defects or even breakdown of processes. It is through
an understanding of the physical mechanisms that stabilize and destabilize
such systems that active control and process optimization of these systems is
possible.

The ability to analyze computationally the steady state behavior of many
complex engineering systems centers on the ability to quickly and reliably ob-
tain solutions to nonlinear algebraic systems with millions of unknowns solved
on large-scale parallel machines. To do this we employ parallel Newton-Krylov
solution strategies [6,20,43,54] that are robust and scale well on distributed
memory architectures. These solution methods are critical kernels used by
continuation methods for tracking the solution branches with respect to key
system parameters. Specialized methods such as Euler-Newton and pseudoar-
clength continuation techniques can be used to follow regular solution paths,
unstable solutions, and critical bifurcation structures in nonlinear solutions.
Many steady state solutions lose their stability to symmetry breaking (pitch-
fork bifurcations), turning points, or periodic oscillations (Hopf bifurcations).
The stability of the solution branches to infinitesimally small disturbances is
determined by the use of linear stability theory [50,11] . A linearizion of the
nonlinear system produces a generalized eigenvalue problem from which the
stability of the nonlinear system is determined. The solution of the general-
ized eigenvalue problem is difficult when dealing with large non-symmetric
systems of equations [55]. For this reason, special techniques must be used to
efficiently determine the eigenvalues with algebraically largest real parts that
govern the stability of the solution branch. One such technique is to recast
the eigenvalue problem using the Cayley transformation, and then employ an
Arnoldi method to approximate the eigenvalues and eigenvectors [49].

The remainder of this paper is organized as follows. The stabilized FE formu-
lation of the governing transport/reaction equations is presented in Section 2.
In Section 3 a brief overview of the solution of large sparse nonlinear algebraic
systems with parallel Newton-Krylov techniques is presented. Parameter con-
tinuation and bifurcation tracking methods are presented in Section 4. The
linear stability problem along with the solution of the non-symmetric gener-
alized eigenvalue problem is discussed in Section 5. In Section 6 we present
some representative performance, scaling and simulation results of these so-
lution methods for some illustrative transport/reaction systems. Finally in
Section 7 we close with a few conclusions.



2 Stabilized FE Formulation of Governing Transport/Reaction Equa-
tions

2.1 Brief Querview of Stabilized Equations

Table 1 presents the conservation equations for momentum, total mass, ther-
mal energy and mass species transport with non-equilibrium chemical reac-
tions for low Mach number flows. Table 1 includes a specific description of
constitutive equations for a Newtonian variable density fluid mixture with a
heat flux vector with thermal conduction and diffusional mass transfer con-
tributions. The diffusional mass species flux vector has transport due to both
concentration gradients as well as thermal diffusion (Soret) effects. The react-
ing flow examples that are presented in this study are based on non-equilibrium
statistical mechanical theory of multicomponent, dilute polyatomic gases. In
this case, necessary transport properties, diffusion coefficients, kinetic rate
constants and diffusion velocities are obtained from the CHEMKIN [41] sub-
routine library. This library provides a rigorous treatment of dilute-gas mul-
ticomponent transport, including the effects of thermal diffusion. Chemical
reactions occurring in the gas phase and on surfaces are also obtained through
CHEMKIN. In general, the necessary constitutive relations for the stress ten-
sor, T, heat flux vector, q, and species mass fluxes, ji, can be quite complex. A
detailed description of more general transport/reaction equations and chemi-
cal kinetics formulations can be found in [60].

The continuous PDE problem, defined by the transport/reaction equations in
Table 1, is approximated by a stabilized FE formulation ([35,5,34,39,31,37,36,67]).
This formulation allows for stable equal order velocity-pressure interpolation
and provides for convection stabilization as described above. The resulting sta-
bilized FE equations are shown in Table 2. The stabilization parameters (the
7’s) are based on the formulations of Hughes and Mallet [38], Shakib [65,66],
Hughes [33], and Tezduyar [70].

The definition of the stabilization parameters are provided in Table 3 for mo-
mentum, energy, and mass species. The multidimensional effect of convection is
incorporated into the stability parameters by the use of the contravarient met-
ric tensor, G, (Eqn 1), of the transformation from local element coordinates
{¢.} to physical coordinates {x;}. Shakib [65] considers the one dimensional
limiting case of this multidimensional definition for the advection-diffusion
equation and presents a comparison with the original SUPG technique,

_ 0C, 0C,
(Gelij = O, 0n; (1)
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Stabilized finite element formulation of transport/reaction PDEs, where the residual

equations R; are presented in Table 1 and the stabilization parameters Ti# are

defined in Table 3.

Finally, it should be noted that this formulation, as presented, has some limi-
tations. First this formulation is a simplification of proposed formulations for
multiple advection-diffusion type equations that also couple the various equa-
tions in the definition of the least squares operators [38]. In addition there is
no stabilization contribution for strong source terms and there is no nonlin-
ear discontinuity capturing term present (see e.g.[38,71,65,13,7,21]). While we
have experimented with these terms they are not used in the results presented
in this overview. In the context of our overview, the current simplified for-
mulation has the advantage of having a continuous stabilization operator. In
addition it is possible to develop analytic Jacobians that are accurate for the
limiting case of constant transport coefficients. These properties are useful for
both for efficient implementation of the Newton-Krylov methods and effective
preconditioning techniques, as well as for development of PDE constrained

optimization techniques that require accurate Jacobians of the PDE problem
[59].

2.2 Brief Overview of Discrete Systems of Equations

To give context to our later discussion of the solution methods and linear
algebra, we present here a discussion of the structure of the equations that
result from the FE discretization of the weak form of the transport/reaction
equations. In this discussion the Newtonian stress tensor is expanded to in-
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Table 3

Definition of stabilization parameters used in stabilized equations, which use the
contravarient metric tensor G, (Eqn 1) to define an element-level streamwise length
scale. The superscript (#) denotes that this parameter has the units of time/density

clude the hydrodynamic pressure, P, and the viscous stress tensor term, ¥ .
The resulting stabilized from of the total mass residual equation in expanded
form is given by
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This expansion includes the weak form of a Laplacian operator acting on
pressure,

K=Y / prEV G - VPAQ, (3)
€.

which is produced by the stabilized formulation of the total mass conservation
equation. Finite element (FE) discretization of the stabilized equations gives
rise to a system of coupled, nonlinear, non-symmetric algebraic equations, the
numerical solution of which can be very challenging. These equations are lin-
earized using an inexact form of Newton’s method as described in Section 3.
A formal block matrix representation of these discrete linearized equations is
given in Eqn 4 where the block diagonal contribution of the stabilization pro-
cedure has been highlighted by a specific ordering. In this representation, the
vector, v/, contains the Newton updates to all the nodal solution variables with
the exception of the nodal pressures, P’. The block matrix, A, corresponds
to the combined discrete convection, diffusion, and reaction operators for all
the unknowns; the matrix, B, corresponds to the discrete divergence operator
with its transpose the gradient operator; the diagonal matrix, R, results from
the group FE expansion of the density and velocity; and the matrix, K, cor-
responds to the discrete “pressure Laplacian” operator discussed above. The



vectors Fy, and Fp contain the right hand side residuals for Newton’s method.

The existence of the well conditioned nonzero matrix, K, in the stabilized FE
discretization of the equations allows the solution of the linear systems with a
number of algebraic and domain decomposition type preconditioners [62,64].
This is in contrast to other formulations, such as Galerkin methods using
mixed interpolation, that produce a zero block on the total mass continuity
diagonal. The difficulty of producing robust and efficient preconditioners for
the Galerkin formulation has motivated the use of many different types of
solution methods. A number of these use two-level iteration schemes, penalty
methods, pseudo-compressibility techniques or decoupled/segregated solvers
(e.g. [74,75]). A detailed presentation of the characteristics of current solution
methods is far beyond the scope of this brief overview. However the intent
of our method of fully-coupling the transport PDEs in the nonlinear solver
is to preserve the inherently strong coupling of the physics with the goal
to produce a more robust solution methodology. Preservation of this strong
coupling, however, places a significant burden on the linear solution procedure
to solve the fully coupled algebraic systems,

A -BT| |V F,
=-1 7l (@
BR K P’ Fp

Our current linear algebra solution procedure uses a specific ordering of the
unknowns locally at each FE node with each degree of freedom order consec-
utively. A single coupled matrix problem, Js = —F, is solved at each Newton
step with sophisticated algebraic domain decomposition and multilevel pre-
conditioned Krylov methods as described in Section 3.3.

2.8 General Description of Evolution, Steady State, and Parameter Depen-
dent Equations

For clarity of the discussions that follow, we present a compact notation for
the functional dependence of the discretized residuals. The time dependence
of the governing equations and the dependence on the physical parameters of
the system are made explicit as follows. Formally we represent, this nonlinear
system of coupled equations in Table 2 as

F(v,v,p) =0, (5)

where F, is the vector of residuals for the stabilized FE equations, v, is the
vector of unknowns, and the list of parameters on which the system depends



is denoted by p. In this paper we focus on steady solutions (0,v,p) of Eqn 5
corresponding to solutions such that:

F(0,v,p) = 0. (6)

3 Obtaining Steady State Solutions: Parallel Newton-Krylov Solver

3.1 Problem partitioning

Chaco [26], a general graph partitioning tool, is used to partition the FE
mesh into sub-domains and make sub-domain-to-processor assignments. Chaco
constructs partitions and sub-domain mappings that have low communication
volume, good load balance, few message start-ups and only small amounts of
network congestion. Chaco supports a variety of new and established graph
partitioning heuristics. For the results in this paper, multilevel methods with
Kernighan-Lin improvement were used. For a detailed description of parallel
FE data structures and a discussion of the strong link between partitioning
quality and parallel efficiency, see [26,63].

3.2 Newton-Krylov Methods

As described above the stabilized FE formulation of the governing steady state
transport equations form a strongly coupled nonlinear system of equations
(Eqn 6). In our solution procedure we use an inexact Newton method with
back-tracking [19,61] to solve this system. For purposes of continuity with the
discussion that will follow on continuation and linear stability analysis, we
present a Newton’s method motivated by a Taylor series expansion about the
current approximate steady solution v;_;, holding the parameters p; fixed,

F(vi) = F(vio1) + Fo(vie1)[Vi — V1] + O(||vi — v |]?). (7)

As is well known, Newton’s method is recovered from Eqn 7 by setting F(vy) =
0 and defining the correction vector Avy = v —vi_; and the Jacobian matrix
Ji_1 = Fy(vi_1). This produces the linear systems (Eqn 8) that are solved at
each step of Newton’s method,

Jk:flAvk = _F(kal)- (8)

Since typical applications for 3D reacting flow solutions require the solution
of linear systems with millions of equations and unknowns we rely on iterative



methods for the underlying linear system solvers. For this reason a Newton-
Krylov method is usually implemented as an inexact Newton method [19,61].
That is, in approximately solving Eqn 8, one chooses a forcing term 7 € [0, 1)
and then applies a Krylov method until an iterate satisfies the inexact Newton
condition,

[F (V1) + Ip1Avi]| < l[F(ve-d)l- 9)

In this context an inexact Newton method uses nonlinear residual information
to determine the accuracy 7, to which the sequence of linear subproblems are
solved. Intuitively one would assume that in the initial stages of the Newton
iteration, when the current approximation is far from the true solution, there
would be no benefit from solving the Newton equations to too high a degree of
accuracy. The inexact Newton method uses an adaptive convergence criteria
to reduce the amount of over-solving that occurs and thereby to produce a
more computationally efficient nonlinear solution procedure. Back-tracking is
a technique for improving the robustness of the nonlinear solver, and works by
scaling the Newton correction vector as needed to ensure that the nonlinear
residual has been reduced adequately before the step is accepted. Specific
choices for 7, in the inexact Newton scheme and a more thorough numerical
evaluation of these methods can be found in [19,61,54].

3.8 Preconditioned Krylov Methods

The linear subproblems generated from the inexact Newton method are solved
by preconditioned Krylov methods as implemented in the Aztec parallel it-
erative solver library [40]. The Krylov algorithms implemented in Aztec in-
clude techniques such as the restarted generalized minimal residual [GM-
RES(k)] and transpose-free quasi-minimal residual (TFQMR) techniques for
non-symmetric systems. In this overview paper, we illustrate briefly the per-
formance of restarted GMRES(k) and TFQMR with domain decomposition
type preconditioners.These preconditioners are based on algebraic additive
Schwarz domain decomposition (DD) methods with variable overlapping be-
tween sub-domains.

The overall performance of Krylov methods can be substantially improved
when one uses preconditioning [56,2]. The basic idea is that instead of solving
the system Az = b, the system AM 'y = b is solved, where M ! is an ap-
proximation to A~! and is easily computed. Since only matrix-vector products
are needed, it is not necessary to explicitly form AM ! (only software to solve
Mwv = y is needed).

10



3.3.1 Additive Schwarz Domain Decomposition Preconditioner

In this section, we define the variable overlap additive Schwarz DD precondi-
tioners that are employed. A more detailed discussion of these methods can
be found in [64] and a general reference is [68]. The 7™ overlap additive two
level Schwarz preconditioner is given by

M= Y LAY @), (10)

where P is the number of processors (equivalent in our case to the number
of sub-domains), I} is an interpolation operator that maps solution vectors
from an auxiliary coarser mesh — which covers the entire domain but with
significantly fewer grid points — to the original fine mesh, and (Aj})~! is the
inverse of the discrete operator on the coarse mesh.

To complete the description we define the transfer operators and the discrete
sub-domain operators, I%, for k > 0. I. is a rectangular restriction matrix
containing only zeros and ones. It injects solutions on the fine mesh to the
vertices of the k' sub-domain that has i levels of overlap. The vertices cor-
responding to the 0" overlap of the k' sub-domain correspond to the vertex
set V2 (which is produced by the Chaco decomposition) where

VIOV =0 Vi (11)

and U7, V; contains all vertices (FE nodes) in the graph (FE mesh). The ver-
tices of the m'* overlap sub-domain are defined recursively by taking all ver-
tices of distance one from V! in the level set of the graph connectivity (i.e.
the FE nodes adjacent to the current sub-domain). Finally, A} = (I¢)T AT
and (Afc)_l is an approximation to A%’s inverse on the sub-domain by per-
forming for example an incomplete LU factorization (ILU) or a Gauss-Seidel
relaxation (smoothing) technique.

4 Mapping Complex Solution Spaces: Continuation and Bifurca-
tion Analysis

The strength of the above robust solution strategy is not just in locating
a single steady-state solution, but in the ability to perform engineering and
scientific analysis. This involves the determination of the nonlinear behav-
ior of the system with respect to key parameters. To this end, continuation
techniques are used extensively [45,42,76] in conjunction with linear stability
analysis techniques discussed in the following section.

11



Euler-Newton continuation is an effective method of continuing a regular path
of points near a given regular point (vo,pp) [42]. To determine a neighboring
point (v, p1) corresponding to p; = pg + Ap, where Ap is a sufficiently small
step in the physical parameter, the following predictor corrector strategy is

used. First, the tangent vector v, = g—;} is computed from Eqn 6 by differen-
tiating with respect to p,
Fovp, + Fpo = Jovp, + Fp, =0, (12)

which can then be solved for v,, with one linear solve of the Jacobian. This
would be the final result for a linear sensitivity analysis, but to track the
nonlinear behavior one must continue. A prediction of (vy, p;) is then obtained
by:

v§” = Vo + Apvy,. (13)

This is used as a starting point for Newton’s method when solving

F(vy,p1) =0. (14)

This algorithm works well for regular solution paths, with the prediction
(Eqn 13) enabling Newton’s method to converge quickly. Since this technique
is used successively to continue along the branch, the continuation approach
can be effective when the solution of Eqn 8 can be obtained efficiently. Euler-
Newton continuation clearly breaks down at simple limit points where the so-
lution “turns back” on itself, where the choice of p; = py + Ap may constrain
p1 to be in a region where no solution (vy, p;) exists. However at these points
the Implicit Function Theorem still holds and an alternate parametrization of
the solution branch is possible.

In this case a pseudoarclength technique proceeds by selecting a step As in
an “arc-length” like parameter [42], by which the solution v(s) and parameter
p(s) have been parameterized. The pseudoarclength technique is used to con-
tinue robustly through very steep changes of the solution with respect to p,
and even past limit (or turning) points in the solution branch. The approach
is to add an additional parameter, s, and an arc-length constraint N(v,p, s)
to the equations governing the steady solutions of Eqn 6. That is, the system

F(v(s),p(s)) =0,
N(v(s),p(s),s) =0,

(15)

is used, where the pseudoarclength parameter, s, parameterizes the solution
branch. At simple turning points, where s continues to increase monotonically

12



even though p does not, the procedure can be proven to continue past the
singular point for sufficiently small As [42].

The coupled system in Eqn 15 is solved by application of Newton’s method.
Newton’s method generates a block matrix system of equations as given in
Eqn 16,

J F,| |Av _ F(v,p) (16)
|| Ap N(v,p, s+ As)

The solution of Eqn. 16 can either be again carried out by Newton-Krylov
methods on this augmented problem, or can be decomposed into 2 individual
solves with J. These algorithms are implemented in the general purpose Li-
brary of Continuation Algorithms (LOCA) software package as described in
[57].

Locating bifurcations is important for engineering analysis because they often
correspond to the onset of undesirable behavior, such as the onset of oscilla-
tions, the breaking of symmetry, or ignition/extinction behavior. At bifurca-
tion points the Implicit Function Theorem does not hold and multiple solution
branches intersect. Once a bifurcation point is located and the eigenvalue and
corresponding eigenvector associated with the bifurcation point have been
calculated, the LOCA library can locate a bifurcation point and track it as a
function of a second parameter. Routines have been implemented in LOCA to
track turning point, pitchfork, and Hopf bifurcations. The tracking algorithms
continue in a parameter, p(;) (called the continuation parameter), and calcu-
late the value of a second parameter, p) (called the bifurcation parameter)
such that the steady state solution remains on the bifurcation point. In this
way, two-parameter plots (a.k.a. bifurcation sets), which map the boundaries
between qualitatively different solution regimes, can be directly generated. The
curves generated by these algorithms often delineate good and bad designs.

As an example, the tracking algorithm for the pitchfork bifurcation requires
the solution of the following system of equations:

F(x,p), pe)) +ew =0, (17)
x-w=0, (18)
Jn=0, (19)
w-n—1=0. (20)

These 2m + 2 equations are solved for the solution vector x, the null vector n,

13



the bifurcation parameter p(y), and a slack parameter € representing the asym-
metry in the system, which typically goes to zero. The initial guess for the null
vector, n{? | is computed with the eigensolver at a point near the bifurcation.
The vector w is antisymmetric with respect to the symmetry being broken,
which in practice is chosen as n(®). The system of equations requires that there
is a steady state solution, that the solution is on the symmetric branch, and
that the Jacobian has a null vector which is non-trivial. Solving this system
of 2m + 2 equations and unknowns repeatedly while performing continuation
in p() will produce the desired locus of symmetry breaking bifurcations in
2-parameter space.

In [57] algorithms have been developed which solve this nonlinear system using
just solves of the Jacobian matrix J. Similar algorithms have been developed
for the two generic instabilities seen in 1-parameter systems, turning points
(folds) and Hopf bifurcations. With this approach, sophisticated design and
analysis capabilities are available to codes that can robustly solve the linear
systems with the same Jacobian matrix as in the Newton step in Eqn 8.

5 Determining Stability of a Solution Branch: Linear Stability Anal-
ysis

Using the continuation procedures of Section 4, the multiplicity of steady so-
lutions available to the system Eqn 6 can be explored. In addition to the
existence of such multiple solutions, it is of equal interest to determine the
stability or long time behavior of such solutions when subjected to various dis-
turbances. The response of the physical system to infinitesimal disturbances
is determined by a linearizion of the nonlinear system in Eqn 5. The back-
ground and theory of linear stability methods is well developed and widely
used [50,11]. The appropriate linearizion of Eqn 5 is formally produced with
a multi-variate Taylor series expansion about the steady solution at (0, ¥):

F(v,v) =F(0,v) + F;[v — 0] + F[v — v| + Higher Order Terms. (21)

Neglecting higher order terms, using Eqn 5 and Eqn 6 and defining the gener-
alized mass matrix, B = —F;, and v/ = v—¥ as the deviation from the steady
solution, we obtain the evolution equations for infinitesimal disturbances,

Bv' = Jv'. (22)

14



The disturbance quantity v/, is given by

N
V, = Z Eieaitqi, (23)
=1

where q; is a generalized eigenvector (or normal mode) with eigenvalue o;.
Eqn 22 then can be written as

0;Bq; = Jq;. (24)

Equation 24 is the generalized eigenvalue problem governing stability of the
linearization of the evolution equations at the steady solution (0, v).

A steady state is linearly stable when all the amplitude coefficients of Eqn 23
decay in time, i.e. when all the eigenvalues have negative real part. A steady
state is linearly unstable when one or more of the eigenvalues has positive
real part. In practice, the eigenvalues of algebraically largest real part in the
spectrum of the linearization are monitored as one of the parameters, say p*,
is varied. As an eigenvalue crosses the imaginary axis, the steady state of the
nonlinear system becomes unstable to infinitesimal disturbances. At a sim-
ple bifurcation point the crossing eigenvalue has zero imaginary part, from
such a point a steady solution branches. The continuation of this branch is
accomplished by the methods of Section 4. The linear stability of the steady
solution branch is determined as described above. The situation for nonzero
imaginary part is however, different. According to the Hopf bifurcation the-
orem, a branch of time periodic solutions branches from a steady solution if
a complex conjugate pair of eigenvalues of the Jacobian matrix crosses the
imaginary axis.

As described computational linear stability analysis calculations rely on the
solution of the generalized eigenvalue problem (24). To compute the rightmost
eigenvalues, a generalized Cayley spectral transform [51,46] is used to reformu-

late the generalized eigenvalue problem into an ordinary eigenvalue problem
[47,49]:

Tw=J-7B)'(J-puBw=vw, v= 7= e (25)
o =N

Here 7. is the pole and p, is the zero of the Cayley transform, and v is the
transformed eigenvalue. Selection of the Cayley parameters, 7, and pu., is crit-
ical to map the correct set of eigenvalues (those with the largest real part)
to the eigenvalues of the largest magnitude in the Cayley transform. The
importance of this transform is that it maps the infinite negative eigenvalues
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generated by the continuity equation (resulting in a singular B from the incom-
pressibility assumption) to a value of one. This makes the spectral condition
number of the system smaller than other typical transformations such as the
shift-invert spectral transformation, and therefore generally easier to apply
the inverse operator with iterative linear solvers [49]. The resulting ordinary

eigenvalue problem is solved using an implicitly restarted Arnoldi’s method in
P_ARPACK [48,49,58 8.

6 Results and Discussion

6.1 An Illustration of Linear Solver Performance and Scaling

In this section we present some representative results for a family of Schwarz
domain decomposition (DD) methods [9,10,68]. These schemes partition the
original domain into subdomains and approximately solve the discrete prob-
lems corresponding to the individual subdomains in parallel. Among Schwarz
schemes, there are a number of choices which can greatly affect the overall
solution time and robustness. These choices include the subdomain size, the
amount of overlap between subdomains, and the partitioning metric which
can alter the shape and aspect ratio of subdomains (see e.g.[22,68,27,28,64]).
The choices also include the selection of subdomain solver such as an incom-
plete LU factorization (ILU) (with further options for dropping nonzeros in
the factorizations and ordering equations within a subdomain [2]), and the
introduction of a coarse grid solve [23,72]. In our overview we briefly comment
on the benefit from employing a coarse grid solve in a two-level DD method.

To compare the performance of the one-level and two-level Schwarz domain
decomposition preconditioners, a scalability study is presented for a standard
two-dimensional benchmark thermal convection flow problem [15] along with
a three-dimensional version of this problem. This example problem models a
thermal convection (or buoyancy-driven) flow in a differentially heated square
box in the presence of gravity (Figure 1). The temperature on the heated
wall and other parameters are chosen so that the Rayleigh number is 1000.
The three-dimensional problem adds two no-slip insulated walls in the third
dimension to form a cube of unit dimensions. These simple geometries facil-
itate scalability studies as different mesh sizes can be easily generated. The
results were obtained on the ASCI-Red Tflop computer at Sandia National
Laboratories. Each node of this machine contains 256 MB RAM and 333 MHz
Pentium II processors. For the one-level DD preconditioner, an incomplete
factorization (ILU) was used. For the two-level preconditioner, the fine mesh
smoother was two sweeps of Gauss-Seidel, and the coarse mesh direct solver
was SuperLU [16]. The fine mesh is generated by uniform refinement of the

16



coarse mesh. A fine-to-coarse grid ratio of roughly 64 in two dimensions and
512 in three dimensions was used.

As an illustration of parallel efficiency we consider the scaling of the one-level
DD ILU preconditioner as presented in Table 4 and 5. The Krylov method
is a transpose free quasi-minimum residual (TFQMR) technique. The results
indicate that the two main kernels of the steady state solver, the matrix fill
(or Jacobian creation) and the preconditioned iterative solver (TFQMR with
DD ILU) scale very well. The matrix creation phase which is based on local
element integration is nearly perfectly scalable, and the linear solver shows a
very high degree of scaled efficiency as well up to 2048 processors in the case
of the 3D simulations.

Fig. 1. 2D and 3D benchmark thermal convection problem, Ra = 103. Figures show
color contours of temperature on the plane and in 3D positive (blue) and negative
velocity (yellow) isosurfaces and streamlines.

Num. | mesh Num. avg iter | total avg time | scaled avg time | scaled
proc unknowns | /Newt | time | /matrix fill eff. | /linear iter eff.
step | (sec) (sec) (sec)
32 | 332 4356 76 1.5 0.0246 — 0.00279 —
128 | 652 16900 193 5.5 0.0244 1.01 0.00297 0.93
512 | 129? 66564 696 12 0.0242 1.02 0.00327 0.84
Table 4

Efficiency of one-level DD-ILU preconditioner for 2D thermal convection problem
with TFQMR

The effects of the parallel and algorithmic scaling of the one- and two-level
preconditioners for the two- and three-dimensional thermal convection prob-
lems are presented in Tables 6 and 7. Figure 2 summarizes the results for the
average iteration count per Newton step as a function of problem size. As the
number of unknowns, N (as well as the number of processors, P, in this scaled
study), is increased the number of iterations to convergence for the one-level
schemes increases significantly: roughly N?/3 in two dimensions and N'/2 in
three dimensions. Note that an optimal convergence property is obtained for
the two-level preconditioner. The parallel version of SuperLU was used to fac-
tor the coarse matrix in groups of approximately P/? processors. Since the
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Num. | mesh Num. avg iter | total avg time | scaled avg time | scaled
proc unknowns | /Newt | time | /matrix fill eff. | /linear iter eff.
step | (sec) (sec) (sec)
32| 333 179,685 105 | 279 6.297 — 0.324 —
256 | 653 | 1,373,125 324 | 680 6.276 0.99 0.345 0.94
2048 | 1293 | 10,733,445 860 | 1749 6.271 1.01 0.364 0.89
Table 5
Efficiency of one-level DD-ILU preconditioner for 3D thermal convection problem
with TFQMR
proc | fine grid | fine grid 1-level ILU 2-level GS-SuperLU
size unknowns | avg its/ | time | coarse | coarse | avg its/ | time
Newt | (sec) | grid | unks Newt | (sec)
step size step
1| 33 4356 41| 23| 52 100 32| 18
4 652 16,900 98 62| 92 324 33 26
16 1292 66,564 251 | 275 | 172 1156 34 30
64 2572 264,196 603 | 1399 | 332 4356 31 46
256 5132 1,052,676 1478 | 8085 | 652 16900 30 | 107
Table 6
Comparison of 1-level and 2-level scheme for 2D thermal convection problem
proc | fine grid | fine grid 1-level ILU 2-level GS2-SuperLU
size unknowns | avg its/ | time | coarse | coarse | avg its/ | time
Newt | (sec) | grid | unks Newt | (sec)
step size step
4 173 24,565 40 | 123 | 33 135 36 | 101
32 333 179,685 112 | 282 53 625 44 | 107
256 653 1,373,125 296 | 863 93 3645 47 | 179
2048 1293 10,733,445 650 | 2915 | 173 | 24565 47 | 546
Table 7

Comparison of 1-level and 2-level scheme for 3D thermal convection problem

fine grid smoother is highly parallel and the fine grid work per processor is
roughly constant, the cost of the direct solve (SuperLU) on the increasingly
larger coarse grid causes an increase in the CPU time for the larger problems.
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While this loss of CPU time scaling is disturbing it must be pointed out that
the two-level methods are still significantly faster (a factor of about 80 in
2D and 6 in 3D) than the corresponding one-level methods. To mitigate this
growth of CPU time for the coarse grid solve either approximate coarse grid
methods can be used (e.g. [64]) or more levels could be employed. In addi-
tion, the ability of the two-level methods to provide a sufficient linear residual
decrease in the sub-problems for Newton’s method allows for a more robust
iterative nonlinear solver. We have seen many examples for which a direct-to-
steady-state nonlinear calculation will fail, for very ill-conditioned large linear
systems, because the iterative linear solver converges too slowly (to be prac-
tical) or does not converge at all. Further details of the parallel performance
and algorithmic scalability of these methods can be found in [63,64].

1-Level and 2-Level Schemes for 2D Thermal Convection Problem 1-Level and 2-Level Schemes for 3D Thermal Convection Problem
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Fig. 2. Scaling of iteration count for one- and two-level preconditioners for 2D and
3D thermal convection problem

In Figure 3 we attempt to interpret the effect of the coarse grid correction
for the two-level scheme physically. This figure presents the x-component of
velocity on a slice plane through the center of the three-dimensional thermal
convection problem for a sequence of meshes from 2® hexahedral elements to
64 hexahedral elements. The figures in the left, center and right columns rep-
resent the coarse and fine mesh in the first, second and third rows respectively
of Table 7. For the two figures in the left column, the 2® element coarse mesh
does not really resolve any basic (long wavelength or coarse) features of the
flow field, so it is no surprise that the two-level preconditioner reduced the
number of iterations by only 10%. For the two figures in the middle column,
the 43 element coarse mesh starts to resolve the basic features of the flow field,
which is why the two-level preconditioner reduced the number of iterations by
60%. For the two figures in the right column, the 8 element coarse mesh does
a significantly better job at resolving the features of the flow field than the
43 element coarse mesh, hence the significant reduction in iterations by a fac-
tor of 6 over the one-level preconditioner. In the case of the 2048 processor
problem (104 million unknowns) this reduction is larger than a factor of 13.
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T

Fig. 3. x-component of velocity on a slice plane through the center of the 3D thermal
convection problem for a sequence of meshes

6.2 An Illustration of Mapping Complex Nonlinear Solution Spaces: Bifur-
cation and Stability Analysis

6.2.1 Impinging Jet Reactor Example [53]

Symmetric counter-flowing jets have been used extensively for studies involv-
ing endothermic decomposition kinetics, diffusion flame kinetics, polymer pro-
cessing, micro/nano-particle synthesis, blood flow, and other applications. A
comprehensive discussion of impinging jet reactor applications can be found
in [69].

Understanding the structure and stability of these flows is critical in inter-
preting experimental results in such reactors. In a collaboration with Prof.
T.J. Mountziaris of SUNY at Buffalo, the algorithmic tools outlined in Sec-
tions 4 and 5 were used to perform a stability and bifurcation analysis of a
laminar isothermal impinging jet reactor [53]. This section includes selected
results from that work to illustrate the power of combining robust solution
algorithms with sophisticated analysis capabilities.

The initial model consists of two isothermal jets with equal mass flow rates.
Figure 4 shows a side view schematic of the impinging jet reactor used in
this study. Two dimensionless parameters dictate the behavior of the imping-
ing jets: the Reynolds number based on the jet separation distance and the
aspect ratio, defined as jet width compared to the jet separation distance.
The procedure for analyzing a two-parameter system involves first performing
continuation runs on one parameter while monitoring the stability with the
linear stability analysis capability. When a bifurcation is detected, the bifur-
cation tracking algorithms are then used to track the critical parameter value
corresponding to the bifurcation point as a function of the second parameter.
Using a relatively small number of simulations, a design map can be con-
structed where qualitatively different flows are delineated by the bifurcation
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Fig. 4. Side view of an impinging jet reactor. Both cartesian and cylindrical models
are considered in this work.
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Fig. 5. Plot of the two leading eigenvalues as a function of jet Reynolds number,
for the 1.7M unknown mesh. Bifurcation is as the leading eigenvalue crosses from
negative to positive. The triangle data point is a bifurcation point located by the
bifurcation tracking algorithm and the two cross data points are the eigenvalues
calculated on a mesh of 10M unknowns.

points as a function of the parameters of interest.

At low Reynolds numbers, a single symmetric steady state was found to exist.
The flow forms a well defined stagnation zone with large convectively driven
recirculations on each side of the inlet jets. For certain geometric configura-
tions, increasing the Reynolds number led to a loss of stability via a pitchfork
bifurcation. This was identified by the rightmost eigenvalue being real-valued
and passing through 0 as the Reynolds number is increased. Figure 5 shows
the leading two eigenvalues, which happen to be real, plotted as a function of
Reynolds number (increasing in fixed steps of 5.0) for an aspect ratio of 1.0.
The exact bifurcation point was pinpointed with the pitchfork tracking algo-
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rithm. The results were performed on a 3D mesh of 1.7 million unknowns on
24 (3.06 GHz Pentium Xeon) processors. The linear solver was a single-level
scheme, with an ILUT preconditioned GMRES. A typical continuation step
took 3 Newton iterations and 8 minutes to solve with 96% of the time in the
linear solver and 4% in the matrix fill algorithm. The linear stability analysis
took another 30 minutes per step. Superimposed results on a 10 million un-
known mesh at a Reynolds number of 90 showed that the eigenvalues are well
converged with mesh. The eigenvalue calculations for this mesh required about
45 minutes on 200 Processors. The lack of algorithmic scalability (increasing
linear iteration count) on this problem underlies the motivation for multilevel
preconditioning schemes.

The (super-critical) pitchfork bifurcation leads to multiplicity in the steady-
state solution with three steady states existing for each Reynolds number
above the critical bifurcation point value. An example of the three steady
states are shown in Figure 6 for a fixed aspect ratio and a Reynolds number of
about 10% above the critical value. The two rightmost eigenvalues are listed
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Ao =-0.062409)

- Ke) a2’ ——
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= (@H‘&Q;).)y —_—
(c) Stable (A;=-0.005718, Fig. 7. Bifurcation diagram at aspect ra-
Ao=-0.062409) tio of 0.125. The position of the stag-

) ) ) nation point on the reactor centerline
Fig. 6. Streamlines for rectangular im- (z-axis) is plotted against the Reynolds

pinging jets at a R?ynolds number of her The upper and lower inlet jets
27.5 and aspect ratio of 0.125. Three .. positioned at -0.5 and 0.5, respec-

steady state solutions are present. (a)  ively. The label PB is the pitchfork bi-
stable asymmetric upper branch, (b) un-

stable symmetric branch, and (c) sta-
ble asymmetric lower branch. The two
rightmost eigenvalues are listed for each
solution.

furcation point. Solid lines are stable
steady states, dashed lines are unstable
steady states.

for each steady state. The real parts of the rightmost eigenvalues of the two
asymmetric solutions, (a) and (c), are negative indicating that they are stable
steady states. The symmetric solution, (b), has a positive real part indicating
that it is unstable to small disturbances.
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Fig. 8. Two-parameter bifurcation set showing different flow regimes, delineated by
pitchfork and Hopf bifurcations.

Using the continuation routines, we were able to track each of the steady state
solutions and construct a bifurcation diagram. The symmetry breaking of the
pitchfork bifurcation shifts the stagnation point in the vertical direction. The
extent of the shift of the stagnation point is shown in the bifurcation diagram
in Figure 7. As one can imagine, the qualitatively different flow solution on
different sides of the bifurcation point can significantly alter the performance
or reliability of the system.

For certain conditions in a rectangular coplanar geometry, we found in refer-
ence [53] that the single stable symmetric jet solution can lose symmetry to
an oscillatory Hopf bifurcation. This is detected by a complex conjugate pair
of eigenvalues moving across the imaginary axis as the Reynolds number is
increased. This flow mode is described as a “deflecting jet oscillation” and is
the behavior that Denshchikov et al. observed and traced out experimentally
[17,18].

For the geometric configurations studied above, the pitchfork and Hopf bifur-
cations each serve to separate qualitatively different flow regimes. By using the
bifurcation tracking algorithms these results can be generalized to a range of
aspect ratios. The results of bifurcation tracking runs are the curves in Figure
8, the two-parameter bifurcation set for this problem. It provides a cohesive
picture for impinging jet physics with rectangular inlets. The symmetric stag-
nation flow Region I is seen to exist for all aspect ratios, while Region II with
the asymmetric steady states and Region III with the deflecting jets oscilla-
tions only exist for certain aspect ratios. The leading eigenvalues along the
bifurcation curve are monitored to confirm that these modes of instability are
not overtaken by other modes, which does occur at the higher-codimension
bifurcation where the Hopf and pitchfork curves intersect.

The stability analysis routines have also been employed on a non-isothermal
chemically reacting model that simulates non-premixed laminar diffusion flames
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Fig. 9. Hydrogen/Oxygen diffusion flame in a non-premixed counterflow jet reactor.
Species contours for OH and O are mass fraction values.
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Fig. 10. Plot of the turning point (extinction point) of the temperature (at the point
z=0.0, r=0.25cm) as a function of Oy concentration of the upper oxidizer stream in
the counterflow jet reactor. The lower non-ignited branch is also depicted.

in counter-flowing jets. In this 2D axisymmetric model, the upper inlet jet is
the oxidizer stream, consisting of oxygen diluted in argon (Og, and Ar) and
the lower inlet jet is the fuel stream, consisting of hydrogen diluted argon (Ho,
and Ar). A reaction mechanism developed by Conaire et al. [14] employs 10
chemical species (we ignore the inert He species in the original mechanism)
and 19 gas phase reactions. Figure 9 shows a plot of the fluid streamlines,
along with contour plots of the temperature, hydroxyl and oxygen atom mass
fraction intermediates which indicate the location of the flame. The fluid en-
ters the reactor at 300°K and has a maximum value of 2727°K inside the
flame. This increase in temperature across the flame of almost a factor of 10
accounts for the acceleration of the oxidizer and the deflection of the stream-
lines downward.

Using the arc-length continuation routine, the extinction point of the diffusion
flame was located. Figure 10 is a bifurcation diagram plotting the temperature
at a fixed point in the reactor (vertically centered and shifted radially by
0.25cm) as a function of the oxygen mole fraction in the upper jet. Three
solution branches were identified, an upper stable branch where the reactor is
in the ignited state, a middle unstable branch still in the ignited state, and
a lower stable branch where the flow is non-ignited. The upper stable and
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middle unstable branches of solutions are connected through a turning point.
This turning point is the extinction point. Reducing the oxygen mole fraction
in the upper jet below this value moves the model into an oxygen-starved
regime where only one solution exists, the non-ignited branch.

The computational performance for solving the 14 coupled transport /reaction
PDEs by the standard one-level DD method is presented in Table 8. Timings
and the scaled efficiency are shown for a single continuation step along the
path to ignition of the gas streams. These results again indicate high parallel
scalability for the local element integrations and the chemical kinetics eval-
uations that make up the matrix fill (Jacobian creation). The linear solver
efficiencies are also very good as well.

Num | level Num. avg time | scaled avg time | scaled
Procs of unknowns | /matrix fill eff. | /linear iter eff.
refine. (sec) (sec)
16 0 199,374 13.94 — 0.5219 —
64 1 790,734 13.86 1.01 0.5286 0.99
256 2 3,149,454 14.06 0.99 0.5363 0.97
1024 3 12,570,894 13.99 1.00 0.5369 0.97
Table 8

Scaled Efficiency of hydrogen/oxygen diffusion flame simulation with DD-ILU
TFQMR.

6.3 An illustration of Solution of Complex Transport/Reaction Systems

6.3.1 Partial Catalytic Ozxidation of Ethane

This example presents representative performance and simulation results for
catalytic partial oxidation of ethane to ethylene. Ethylene is one of the most
widely used chemicals, with the US producing 25 billion kilograms annually.
Catalytic partial oxidation (CPQO), a very rapid and autothermal process,
would provide a huge capital cost saving over the traditional steam crack-
ing process [3]. The goal of this study was to look for processing conditions
where the selectivity and conversion of CPO are competitive of those for steam
cracking. The standard production process of steam cracking produces ~85%
selectivity with a conversion of ~60% of ethane. Using Platinum-coated foam
monoliths, Huff and Schmidt [29,30] found that a selectivity of ~65% to ethy-
lene could be achieved at a conversion of ~70%. Computational investigation
of alternative operating conditions, particularly at high pressures, is preferable
to experimental studies due to safety concerns.
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The reactor under consideration is a straight tube monolith (a bundle of
straight tube channels with the same inlet feed). In this study, we look at
tubes that are 4 cm long: a 1 cm non-catalytic inlet section (radiation shield),
followed by a 1 cm section coated with Platinum, followed in turn by a 2 cm
non-catalytic outlet section. The inside diameter of the tube is 0.6 mm. The
computational domain is one tube, modeled with 2D cylindrical coordinates,
and includes heat conduction in the wall so that the natural autothermal
operation can be simulated.

The reaction mechanism was supplied by Dave Zerkle of Los Alamos National
Labs and comes from his collaboration with Mark Allendorf of Sandia National
Labs. The mechanism consists of 22 gas-phase species with 77 reversible gas-
phase reactions, and 17 surface species undergoing 35 surface reactions. The
CHEMKIN and SURFACE CHEMKIN packages are used to provide rigorous
treatment of the multicomponent transport properties and species produc-
tion/consumption rates. All physical properties in the gas-phase are treated
as functions of the local temperature and mole fractions and a global operating
pressure.

Modeling this reactor presents numerical challenges. The ethane/air mixture
passes through the reactor at over 1 meter per second and the temperature
in the reactor changes by a factor of four within millimeters, both producing
very large gradients. The reaction terms (both surface and gas phase) and the
dependence of the physical properties on the local state cause significant non-
linearities. Scaling is also an issue, since some of the intermediate species never
reach mole fractions above 107° yet are significant to the reactive process.

Solutions to the governing set of 26 coupled PDEs were obtained using the
Finite Element code MPSalsa developed by Sandia National Laboratories. The
calculations presented here were on a fine mesh of 2727 nodes corresponding
to 70902 unknowns. The Aztec linear solver package is used, and an ILUT
preconditioner with overlap and fill-in and the GMRES iterative solver were
selected. A pseudo-time step time integration process was needed once to get
to a first steady state solution. Once a steady state solution was achieved, all
other solutions were calculated by steady state parameter continuation.

Here, we will present results from parameter studies on two key parameters,
the inlet feed ratio of carbon to oxygen ratio (CoHg/O5) and the reactor pres-
sure. The effects on performance on four other other parameters have been
studied in a technical report [52].

Selected solution variables at steady state are shown in Figure 11. The flow
is from left to right, the axis of symmetry is at the top, and the bottom red
strip is the solid wall, where only the heat conduction equation is solved.

The velocity plot shows the acceleration due to the increase in temperature
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Streamlines Desired Product: CoHy (Max: 0.189)
Ax1a1 Velocity Undesired Prod.: COy (Max: 0.189)

Temperature (Max: ~ 1400°K) Intermediate: O (Max: 6.35e-7)

-_LJ_I_

Reactant: Oy (Max: 0.267) Intermedlate CHj3 (Max: 0.000153)

Reactant: CoHg (Max: 0.452) Intermed.: CH,HCO (Max: 2.57e-6)

Fig. 11. Contour plots of 10 of the 22 solution variables at steady state. For visual-
ization purposes, the radial (vertical) dimension on the the plots has been stretched
a factor of 10. Only the temperature is solved for in the wall, which appears red
in the other plots. The maximum mass fraction achieved in the reactor appears for
the species unknowns.

and the net decrease in the mixture molecular weight of the products, while
the temperature plot shows the large gradient near the beginning of the cat-
alyst. The plots of the reaction intermediates show how different elementary
reactions take place in different zones of the reactor. The most relevant plot
is of CO9 mass fraction, the undesirable product of total oxidation, which is
produced exclusively in a very sharp peak right at the beginning of the cata-
lyst. Design alternatives that restrict the availability of oxygen at this point
may significantly increase the selectivity to CoHy.

A parametric study was undertaken, using the algorithms presented in Section
4, to identify the optimal operating conditions for reactor based upon the
currently proposed catalysis and chemistry mechanisms. The first parameter
of interest is the carbon to oxygen (C/QO) ratio to verify the computations
against the experimental observations from Veser and Schmidt [73]. Figure 12
depicts the conversion and selectivities for an increasing C/O ratio from 1.8
to 2.4. Note that there is an extreme drop in conversion (down to 65%) with
a marginal increase in ethylene selectivity. The C/O parameter is critical in
maximizing the efficiency of this reactor system.

Figure 13 shows the conversion and selectivity plots for a continuation study of
the reactor pressure parameter. The interesting behavior is that the selectivity
goes through a maximum around 4.5 atm. Overall, the performance is a weaker
function of pressure then the C/O ratio.

The computational analysis of the catalytic partial oxidation reactor has

helped to elucidate the dependence of key parameters on the performance
of the reactor [52]. Robustness and efficiency of the steady-state solution pro-
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Fig. 12. Conversion and selectivity of Fig. 13. Conversion and selectivity of
Carbon atoms as a function of inlet Carbon atoms as a function of reactor
carbon to oxygen ratio, as calculated pressure, as calculated from a contin-
from a continuation run. uation run.

cedure is crucial for performing parametric studies and, as will be shown in
the following example, even performing optimization of complex reacting flow
systems.

6.3.2 Chemical Vapor Deposition of Poly-Silicon

This second example presents representative CPU time performance for the
one- and two-level preconditioners applied to chemical vapor deposition (CVD)
of poly-Silicon. Figure 14 shows the geometry and steady-state calculation for
a three-dimensional reacting flow simulation for the deposition of poly-silicon
in a horizontal rotating disk reactor. A mixture of trichlorosilane (SiCl3H),
HC(CI, and H, enters from the four inlets on the left, flows over a forward facing
step, and over an inset rotating disk. The disk is heated to 1398K, which initi-
ates chemical reactions to deposit silicon on the wafer. The chemical reaction
model of Kommu, Wilson, and Khomami [44] was used, along with a similar
reactor design. This calculation is a full reacting flow problem with unknowns
for the three velocity components, hydrodynamic pressure, temperature, and
the above three chemical species, and nonlinear surface reaction boundary
conditions.

Figure 14 shows the schematic picture of the reactor, along with representa-
tive streamlines through the reactor and deposition rate contours along the
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rotating susceptor. Optimization calculations have been performed on this re-

Fig. 14. 3D horizontal epitaxial-silicon CVD reactor, including 4 split inlets and step;
right image shows flow streamlines and a contour plot of poly-silicon deposition rate
on the susceptor surface (flow is from left to right, and red represents high deposition
rates)

actor to minimize the non-uniformity of the deposition rate over the disk,
after the averaging effect of rotation is factored in. Instantaneous deposition
rate profiles are shown in Figure 15 and show the remnants of the split inlets,

Fig. 15. Contour plot of instantaneous deposition of poly-silicon in 3D hori-
zontal CVD reactor with split inlets; left image shows initial non-optimized
flow/transport/reaction  conditions and right image shows optimized
flow /transport/reaction conditions over 4 parameters.

though this effect is decreased in the optimized solution. The radial deposition
profiles for initial parameter values and the results of 2 optimization calcula-
tions are shown in Figure 16. The standard deviation of these profiles is the
objective function minimized by the optimization algorithm over key operat-
ing parameters. Clearly, robust and scalable solution algorithms are required
for these complex and large systems, since they form the inner kernels of the
optimization runs.

Representative performance results are presented from a simple continuation
step where the reactor thermodynamic pressure was increased from 0.6 at-
mospheres to the operating pressure of 0.85 atmospheres. Preliminary scaling
results are presented in Table 9 for a sequence of hexahedral meshes. The first
four rows of the table present a scaled study where each successive row is a
uniform refinement of the mesh in the previous row. The number of unknowns
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Fig. 16. Radial profiles of angularly-averaged deposition (due to disk rota-
tion) of Poly-Si in 3D horizontal CVD reactor. Optimization runs minimize the
non-uniformity of the deposition rates. Plot shows initial non-optimized, and the
4-parameter optimized conditions (optimization variables: inlet velocity profiles,
wafer rotation rate, the purge flow velocity and inlet reactant concentration pro-
files)

is varied from 87,000 to 38 million. The solution method was non-restarted
GMRES with ILU as the preconditioner with the convergence criterion for the
linear solve was chosen to be 3 x 107%. These calculations were performed on
the Sandia Cplant machine, which consists of 500 MHz Dec Alpha processors
with Myrinet interconnect (performance of the 500 MHz Dec Alphas were very
roughly comparable to 1 GHz Pentium 3 CPUs).

The final row of the table presents results with the 2-level preconditioner with
ILU smoother on the fine mesh and ILU approximate solve on the coarse
mesh of 87,000 unknowns. These preliminary results show that the two-level
preconditioner for the largest problem was about 25% faster than the one-
level preconditioner. While this reduction in time is not as impressive as for
the fluid flow calculations presented earlier, there is still a reasonable benefit
to using the two-level method. Note that this is a particularly difficult problem
to solve and a direct-to-steady-state fully-coupled solver is being used.

Calculations with the two-level preconditioner were not performed for any
meshes other than the finest. This is because a geometric two-level precondi-
tioner requires that a coarse mesh be generated. The 87,000 unknown mesh
is the coarsest mesh generated for this problem, and the cost of this coarse
mesh solve with a fine mesh that is only about eight times larger would be
very significant compared to the fine mesh. In practice, the fine mesh needs
to be substantially larger than the coarse mesh to obtain benefits from the
two-level preconditioner. For the 37.8M unknown problem, the coarse mesh of
87,000 unknowns was large enough to preclude using a direct solver, which is
why the approximate ILU solve was used. Use of a multilevel preconditioner
(more than two levels) would alleviate these constraints, as very coarse meshes
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proc | level | unknowns Preconditioner avg iter/ | total
of Newt step | time

ref [steps] | (sec)

21 0 87,000 DD-ILU 47 16] 742

16 1 636,000 DD-ILU 88 [8] | 1531
128 | 2 4,846,000 DD-ILU 200 [9] | 3703
1000 | 3 | 37,807,000 DD-ILU 482 [10] | 10973
1000 | 3 | 37,807,000 | 2 level (ILU/ILU) 230 [10] | 8174

Table 9
One- and two-level preconditioner for 3D horizontal epitaxial-silicon CVD reactor

could be obtained. Work on a multilevel algebraic preconditioner for reactive
flow problems is currently being pursued.

7 Conclusions

This paper has presented a brief discussion of a stabilized FE formulation for
low Mach number flow, thermal energy transfer and mass species transport
with non equilibrium chemical reactions. An overview of the stabilized FE for-
mulation was described along with the numerical solution methods required for
detailed analysis of complex steady state transport/reaction systems. These
solution algorithms include robust nonlinear and linear solution schemes, pa-
rameter continuation methods, and linear stability analysis techniques. Using
these techniques and the computational power of massively parallel computing
we have demonstrated the ability to carry out detailed and efficient engineer-
ing analysis of complex nonlinear transport/reaction systems with the goal of
producing an understanding of the physical mechanisms which stabilize and
destabilize such systems.
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